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Abstract

Releveling and other geophysical data for the Imperial Valley of southern Cal-

ifornia suggest the northern section of the Imperial-Braw]ey fault system, which

includes the Mesquite Basin and Brawley Seismic Zone, is much younger than the

4 to 5 million year age of the valley itself. A minimum age of 3000 years is calcu-

lated for the northern segment of the Imperial fault from correlations between sur-

face topography and geodetically observed seismic/interseismic vertical move-

ments. Calculation of a maximum age of 80,000 years is based upon displace-

ments in the crystalline basement along the Imperial fault, inferred from seismic

refraction surveys. This young age supports recent interpretations of heat flow

measurements, which also suggest that the current patterns of seismicity and

faults in the Imperial Valley are not long lived. The current fault geometry and

basement morphology suggest northwestward growth of the Imperial fault and

migration of the Brawley Seismic Zone_ We suggest this migration is a manifesta-

tion of the propagation of the Gulf of California rift system into the North Amer-

ican continent.
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The Salton Trough is a complex transition zone between crustal spreading in

the Gulf of California and right-lateral transform motion along the San Andreas

fault system (Figure 1). The Imperial Valley is that section of the Salton Trough

north of the U.S. - Mexico border and south of the Salton Sea (Figure 2). The

Trough is characterized by predominately right-stepping, right-lateral en echelon

faults, presumably linked by zones of crustal extension [Lomnitz et al., lgT0; Eld-

ers et al., 1972]. It is a 150 by 300 km structural depression, 4 to 5 million years

old, and filled by up to 15 km of late Cenozoic sediments. The seismic velocity of

the lower 5-10 km (Vp -_ 5.7 kin/s) suggests they are greenschist-facles, metasedl-

mentary rocks [Fuis et aI., 1984].

The Imperial Valley and its major fault systems trend northwesterly, nearly

parallel to the relative motion between the North American and Pacific plates.

Dextral faulting predominates, although northeast trending left-lateral structures,

as well as dip-slip motion along north-south surface breaks, play a significant role

in the regional tectonics [Johnson and Hutton, 1982; Nicholson et al., 1986; Reil-

inger and Larsen, lg86].

The Mesquite Basin is a subaerial topographic low bounded on the west by

the northern Imperial fault and on the east by the Brawley fault (Figure 2). Max-

imum basin relief is about 10 m relative to its periphery. Evidence that the

Mesquite Basin is actively subsiding includes geodetic measurements of surface

deformation and measurements of vertical slip along the Imperial and Brawley

faults. We provide evidence that the Mesquite Basin is extremely young compared

to the age of the Imperial Valley, suggesting this section of the Imperial-Brawley

fault system is at an early stage of tectonic development. We extend this
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hypothesis and suggest ongoing northwestward propagation of the Gulf of Califor-

nia rift system.

Imperial Valley Seisrnicity and Faulting

The Imperial Valley is one of the most seismically active regions of California

(Figure 3). A significant fraction of this seismicity occurs within the Brawley

Seismic Zone, a region of high activity between the northern ImperiM and south-

ern San Andreas faults [Johnson, 1979; Johnson and Hill, 1982]. The Imperial

fault has ruptured historically, in 1940 (M s _ 7.1) and in 1979 (M L ---_ 6.6);

episodes of creep have been recognized along the fault since 1966 [Allen et al.,

1972]. Other major events in the Imperial Valley include the recent 1987 Supersti-

tion Hills earthquake sequence: a M s -_ 6.2 event produced by slip along a

northeast trending seismic lineament, followed 12 hours by a Ms ----- 6.6 earth-

quake produced by slip along the Superstition Hills fault [Magistrale et al., 1989;

Williams and Magistrale, 1989].

The 1979 surfacial rupture of the Imperial fault extended northwestward 33.1

km from a point 5 km north of the border to a point south of Brawley (Figure 4).

The predominate strike of the Imperial fault is N37" W. Along the northwestern

most 5 kin, however, the fault bends and trends north-south. We refer to this

segment as the north extension. Parallel and 6 km east of the north extension,

the Brawley fault ruptured in 1979 along a 13 km surface break. The rupture

pattern generally featured left-stepping en echelon cracks that extended a few mil-

limeters to a few centimeters [Sharp el al., 1982]. A third, yet relatively minor 1

km north-south break named the Rico fault-was mapped 6-7 km east of the

Brawley fault (Figure 4). The surface breakage along this structure resembled that
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of the Brawley fault zone. The geometrical similarity in strike and separation

shown by the north extension, Brawley, and Rico faults, suggest a similar tectonic

origin.

The epicenter of the 1940 earthquake was north of the U.S. border, but right-

lateral surfaclal offsets were larger in Mexico (Figure 3). A maximum surface

offset of 6 meters was recorded near the border, with displacement tapering off

rapidly to the north [Trifunac and Brune, 1972; Sharp, 1982]. Geodetic measure-

ments indicate 4.5 and 3.0 m of right lateral slip (coseismic plus postseismic)

along the southern and northern halves of the Imperial Fault, respectively (i.e.,

north and south of the epicenter), with 2.0 m postseismic sllp along a northwest

extension of the Brawley fault [Reilinger, 1984]. The 1970 epicenter was south of

the border, although surfacial displacement was observed only in the United

States. Maximum coseismic surfacial offset was 55-60 cm, with considerable aft-

erslip (---30 era) during the following 6 months [Sharp et al., 1982]. Strong ground

motion and geodetic modeling [Archuleta, 1984; Hartzell and Heaton, 1083; Reil-

inger and Larsen, 1986] suggest an average slip of about 1 m along the fault

plane, with small patches of higher displacement (asperities).

The mechanism of strain transfer between the Imperial and San Andreas

faults within the Brawley Seismic Zone has been the focus of considerable investi-

gation [e.g., Johnson, 1979]. A conjugate relationship of right-lateral, northwest

trending faults perpendicular to left-lateral, northeast trending structures may

play a significant role in the regional tectonics [N]cholson et al., 1986]. Although

the Imperial and San Andreas faults strike predominately northwest (right-

lateral), a left-lateral structure extending northeast from the northern terminus of

the Imperial fault is indicated from focal mechanisms and the aftershock pattern



of the 1979 earthquake [Johnson and Hutton, 1982]. A conjugate fault mechan-

ism is supported by Reilinger and Larsen [1986], who suggested several tectonic

models in the Brawley Seismic Zone satisfying geodetically determined measure-

ments of vertical surface displacement. The preferred model consists of a

northeast trending left-lateral fault conjugate to a right-lateral northwest trending

structure dipping 70" to the southwest (Figure 3, dashed lines). Neither fault

broke the surface but roughly 1 m slip at depth was required to fit the geodetic

measurements. A similar conjugate fault relationship was observed for the 1987

Superstition Hills earthquake sequence [e.g., Magistrale et al., 1989].

Aftershocks from the 1979 earthquake have been relocated following the pro-

_dures of Do_er and K_namori [1088] and Klein [1985] (Figure 3). The northeast

trending seismic lineament first identified by Johnson and Hutton [1982] is clearly

defined. To the north, a tightly constrained group of events following a northwes-

terly direction is indicated. Epicentral depths for this cluster range from 5 to 11

km, possibly putting them on the 70" west dipping structure suggested by Reil-

inger and Larsen [1986]. We have computed focal mechanisms for these events

and find them consistent with a northwest-trending right-lateral fault (Figure 3).

Thus, both seismic and geodetic data suggest the tectonic framework of the Braw-

ley Seismic Zone is marked by en echelon northwest-trending right-lateral faults

linked by conjugate left-lateral structures.

Extending southeast from the southern tip of the San Andreas fault is a linear

alignment of earthquakes (Figure 3), here referred to as the Sand Hills seismicity

lineament. This feature may signify the southeasterly extension of the San

Andreas fault, although there is no surfacial geological evidence to support this

hypothesis [Sharp, 1982].
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The earthquake recurrence interval along the Imperial fault is not well con-

strained. Sykes and Nishenko [1984] use the 39 year interval separating the 1940

and 1070 shocks as well as a 1015 earthquake sequence located near El Centro

[Beal, 1915] to estimate a 32 year recurrence rate. Anderson and Bodin [1987]

suggest the fault north of the border will next rupture between 2010 and 2050 (50

year recurrence), and the next break along the southern segment to occur between

2170 and 2290 (300 year recurrence). Measurements of surface offset, as well as

seismic and geodetically determined estimates of fault slip at depth, indicate the

1040 fault rupture was several times larger than in 1070, in agreement with the

larger magnitude for the 1040 event (M s -_ 7.1 vs. M s -- 6.6). North of the

border, however, the magnitude of horizontal surface displacement was relatively

constant for the two earthquakes. One explanation ks that the fault north of the

border may rupture more frequently but with smaller events. Alternatively, the

large postseismic slip following the 1940 earthquake indicated by geodetic data,

suggests that a significant fraction of strain buildup may be releaved aseismically.

If the entire 49 mm/yr movement between the Pacific and North American

plates predicted by new global plate models (NWVAL 1) [DeMets et al., 1987] is

accommodated across the Imperial fault, 1.0 meter of seismic or aseksm]c fault slip

would require a 20 year interval of strain buildup. More likely, however, a

significant component of plate motion is distributed along the Elsinore and San

Jaclnto fault systems [Sharp, 1981; Pinault and Rockwell, 1984; Snay et al., 1986],

as well as faults offthe coast of southern California [e.g., Weldon and Humphreys,

1986]. Triangulation and trilateration measurements from 1941 to 1981 in the

central Imperial Valley indicate an average displacement across the Imperial fault

of 40 mm/yr [Snay and Drew, 1088]. Preliminary results utilizing the Global

Positioning System (GPS) suggest a similar rate between 1986 and 1088, although
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interpretation of these measurements have been complicated by large displace-

ments from the 1987 Superstition Hills earthquake sequence [Larsen ct al., 1088].

Assuming 40 mm/yr of plate motion across the Imperial fault, 1.0 m of poten-

tial slip will accumulate in 25 years. This will be equivalent to the earthquake

recurrence interval, at least for the northern segment of the Imper]al fault, if the

-_1.0 m surface displacement measured in 1040 and 1970 is characteristic of fault

displacement and if all slip is generated seismically. Considering the likely-hood

of aseismic deformation, as well as the seismic and geodetic models indicating

asperities along the 1070 rupture plane, it is reasonable to expect that the average

slip generated along the northern Imperial fault during each earthquake (or earth-

quake cycle) is somewhat greater than 1.0 m. Assuming 2-3 m of slip (based on

the seismic plus postseismic offset estimated for the 1040 earthquake and the max-

imum slip observed for the 1070 earthquake), more reasonable estimates of earth-

quake recurrence would be 50 to 75 years for this segment of the Imperial fault.

Subsidence of the Mesquite Basin

First-order leveling surveys crossing the northern Mesquite Basin were con-

ducted by the National Geodetic Survey (NGS) in 1031, 1041, 1074, 1078, and

1980 (Figure 4). Profiles of elevation change from 1031 to 1041, 1041 to 1074,

and 1078 to 1080 are shown in Figure 5. The procedure used to determine these

crustal movement profiles is described in Brown and Oliver [1076]. Briefly, an

estimate of relative elevation change between successive benchmarks is obtained

by subtracting the elevation difference between benchmarks measured at some

reference time from the difference measured at some later time. These movement

profiles have not been connected to any external reference. Therefore, only rela-



tive movements along the level lines are significant.

The random error for these measurements is comparatively small, less than 1

cm. In addition, elevation-correlated errors (i.e., rod calibration and atmospheric

refraction) which can obscure or be mistaken for real tectonic deformation, will

not seriously affect the data because of negligible topographic variation along the

leveling route (Figure 5a).

The 1931-1941 and 1041-1974 profiles have been modeled as eoseismic and

postseismic deformation from the 1940 Imperial Valley earthquake [Reilinger,

1984]. Displacements for the most recent interval (1978 to 1980) have been

modeled as surface deformation from the 1979 earthquake [Reilinger and Larsen,

1986]. The most striking feature of the leveling data is the similar pattern of sub-

sidence across the Mesquite Basin observed on all three profiles, suggesting this

deformation style is characteristic for the region. Coseismic subsidence for the

1940 and 1970 events are on the order of 10-15 cm, with an additional 15 cm fol-

lowing the 1040 earthquake. Total subsidence for the period 1031 to 1980 is

about 40 cm.

Elevation along the leveling route is shown in Figure 5a (dashed line). A rela-

tively constant northward slope of-0.0011 radians is observed. This long-

wavelength trend may mask small scale variations, so we construct a modified

topographic profile by removing this regional slope (we add 0.0011 radians to the

true profile). The modified profile, or adjusted topography, is shown as the solid

line in Figure 5a. The i0-meter depression between g and 22 km marks the boun-

dary and surface relief along the northern part of the Mesquite Basin. The topo-

graphic relief is well correlated with the seismically generated subsidence, strongly

suggesting the Mesquite Basin formed by many episodes of seismic activity similar
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to the 1940 and 1979 events.

Vertical surface slip along the northern section of the 1979 rupture plane

ranged from 0 to 30 cm (including fl months afterslip), while vertical offset along

the Brawley fault was 0 to 24 cm [Sharp et al., 1982]. Measurements of vertical

slip following the 1940 earthquake were sparse, although the sense of displacement

was generally the same as in 1070 [Sharp, 1982]. During an earthquake swarm in

1975, up to 20 cm of vertical displacement was observed along the Brawley fault

and an additional 20 cm possibly occurred between 1960 and 1975 [Sharp, 1976].

In each ease, slip was down to the east along the Imperial fault and down to the

west along the Brawley fault. That is, the Mesquite Basin underwent subsidence

during each event.

Perhaps the most puzzling and intriguing aspect of deformation in the

Mesquite Basin is shown by the offset pattern recorded in the crystalline basement

along the Imperial fault. Seismic refraction experiments were conducted by the

U.S. Geological Survey in the Imperial Valley during 1079 [Fuis et al., 1984].

Three refraction lines RL-1, RL-2, and RL-3 cross the Imperial fault where shown

in Figure 4. (These correspond to Fuls et al. [1984] lines 6NW-ISE-1NW, 1ESE,

1E-2W.) The seismic measurements indicate a 1000 m basement offset across the

Imperial fault at RL-1, a 500 m offset at RL-2, whereas no basement offset is

observed at RL-3. That is, the offset increases to the southeast. Where detect-

able, the subsurface morphology is down to the east. The basement is defined as

rock with V_ _- 5.{} kin/see, which approximately corresponds to 5 km depth.

What makes the basement structure so unusual is its opposite arrangement to the

deformation displayed at the surface, where vertical fault offsets measured for the

1940 and 1979 earthquakes generally increased to the northwest. In fact, where
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the basement structure is maximum (at RL-I), the coselsmic vertical surface dis-

placements were either small or non-existent. Presumably, this apparent

discrepancy between surface and sub-surface structure must illustratean impor-

tant tectonic feature.

Age of Faulting

The correlation between geodetically measured subsidence and the topographic

expression shown in Figure 5 strongly suggests this region developed from episodes

of seismic activity similar to the 1940 and 1970 earthquakes. In fact, this example

dearly illustrates that earthquakes are a fundamental building block of tectonic

structures. The 10 m surface depression, together with the subsidence rate and

basement morphology, places constraints on the age of the Mesquite Basin, and

correspondingly the northern segment of the Imperial fault.

About 5 m of seismic and postseismic slip along the Imperial fault north of

the border is required to form the 40 cm subsidence between the earlest and most

recent levelings across the Mesquite Basin (1931-1980) [Reilinger, lg84; Reilinger

and Larsen, 1986] (additional slip is required to the northest of the basin and

along the Brawley fault to produce the detailed deformation pattern). At a plate

motion rate of 40 mm/yr across the Imperial fault, 5 m of potential slip will accu-

mulate in 125 years. The equivalent basin subsidence rate is thus about 3 ram/yr.

While depending heavily on the rate of strain accumulation, this analysis is

invariant to the earthquake recurrence interval.

At a tectonic subsidence rate of 3 mm/yr, the 10 m depression which outlines

the Mesquite Basin would form in 3000 years. This suggests that the tectonic

framework underlying the basin, namely the northern Imperial and Brawley
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faults,is extremely young compared to the 4 to 5 million year age of the Imperial

Valley. However, this estimate does not include sediment influx into the Mesquite

Basin. While the measured seismic subsidence is about an order of magnitude

larger than typical fillrates in arid regions [Oilier,1078], the basin is located in

one of the largest river deltas in the United States; presumably sediment influxis

high. In fact,the average rate of deposit in the central Imperial Valley is about 1

mm/yr (5 km over the last5 million years),only slightlysmaller than the rate of

tectonic subsidence. Overlying sediments may mask a deeper basin, so 3000 years

is an extreme minimum time for basin development.

The lack of an observed basement offset at RI_3 places further constraint on

fault age. The geometry and dextral motion of the San Andreas and Imperial

faults require extension in the Brawley Seismic Zone. Dip-slip motion along the

northern Imperial and Brawley faults helps to fill this requirement. Although geo-

detic, geologic, and strong-motion data indicate significant vertical displacements

along the northern segment of the Imperial fault (north of its intersection wlth the

Brawley fault), apparently insufficient time has elapsed to allow the formation of

a detectable basement offset at its northern extent. The lack of offset suggests

this region formed relatively recently and is at its earliest stage of tectonic

development. Assuming the refraction data can resolve offsets of 250 m (1/2 the

offset measured at RL-2), at a tectonic subsidence rate of 3 mm/yr the maximum

age for the northern Imperial fault is about 80,000 years; again very young com-

pared to the 4-5 million year age of the Imperial Valley.

Other evidence support a young age for this segment of the Imperial fault.

Models of the heat transfer mechanisms, suggest the Salton Sea geothermal field

(Figure 4) formed within the last 3500 to 12,000 years [Kasameyer et al., 1980],
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consistent with the 3000 to 80,000 year age range calculated for the Mesquite

Basin. If representative of central Imperial Valley tectonics, the geothermal field

likely formed contemporaneously with the Brawley Seismic Zone, and correspond-

ingly with the northern Imperial fault. To achieve a balance between thermal

constraints and the current composition of the crust, heat flow measurements

within the Imperial Valley indicate an average extension rate of _10-148 -1 since

the formation of the Salton Trough [Lachenbruch et aI., 1085]. At this rate, the

differential velocity between the Pacific and North American plates requires that

extension and faulting must have been distributed over a relatively wide region

(--_150 kin) during the last 4-5 million years. Presumably, tectonic and seismic

activity, which is presently highly concentrated along the Imperial fault and

within the Brawley Seismic Zone, is part of an evolutionary process in which tec-

tonic activity is shifted from one region of the valley to another. The northern

Imperial and Brawley faults, Mesquite Basin, and Brawley Seismic Zone may

represent the most recent epoch of activity in a rapidly changing fault geometry.

Propagating Rift

The relationship between seismicity, dip-slip faulting, and basement offset

indicate a young age for the northern segment of the Imperial fault. Similarly,

the larger basement offset along the central section of the fault (at RL-1) suggests

significant vertical slip along this segment in the past.

We suggest a scenario for the recent history of the Imperial fault and Brawley

Seismic Zone, which is consistent with the notion of northwestward propagation

of the Gulf of California oceanic rift system. Although rupture along the Imperial

fault is predominately strike slip, the large component of normal motion along the
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northern segment of the fault is presumably in response to the en echelon

geometry of the San Andreas and Imperial faults. These faults may act as

transforms associated with a spreading center beneath the Brawley Seismic Zone

[Elders et al., 1972; Johnson, 1979]. If the northern extent of the Imperial fault,

as well as the Brawley Seismic Zone were previously further south (perhaps

southeast of El Centro), dip slip motion would be expected along this segment of

the fault. Eventually, a detectable offset would develop in the crystalline base-

ment. As the spreading center (Brawley Seismic Zone) migrated northwest to its

present position, so would the vertical movements during seismic events.

Although rupture along the older section of the fault would change to strike slip,

a vertical offset would be recorded in the basement. This model can account for

the apparent disparity between long-term vertical offsets on the Imperial fault

(increasing basement offset to the southeast) and present-day seismic fault sllp

(maximum dip-slip along the northern segment of the fault).

The rupture pattern for the 1979 earthquake supports this hypothesis (Figure

4). Clearly the northern Imperial and Brawley faults are active components in the

stress/strain transfer mechanism between the Imperial and San Andreas faults.

Both structures show significant seismic displacements at the surface and at

depth. Although displacement along the Rico fault was approximately 10 cm vert-

ical with no horizontal offset [Sharp et al., 1982; Reilinger and Larsen, 1986], the 1

km rupture length suggests it is only a minor constituent in the regional tectonics.

In fact, the Rico fault may be an older structure reactivated during the 1979

earthquake. The Rico, Brawley, and the north extension of the Imperial fault,

each follow a north-south trend and are uniformly spaced at distances of 6 to 7

kin. This strong geometrical relationship among the three faults suggest a similar

tectonic origin. A schematic illustration of the temporal evolution of this region is
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shown in Figure 6. If the Brawley Seismic Zone was further southeast than at

present, the Rico fault may have acted as the Brawley fault does today. Simi-

larly, the Brawley fault would have been the northernsplay of the Imperial fault,

identical to the present north extension. A prehistoric basin would have

developed between the Rico and Brawley faults (forming the observed fault offset),

similar to the Mesquite Basin. Presumably, as the Imperial fault lengthened to

the northwest, the Rico-Brawley fault system no longer influenced the

stress/straln distribution between the northern Imperial and southern San

Andreas faults. As a result, a new fault developed (north extension) and the Rico

fault died out. Continued migration of the Brawley Seismic Zone may in the

future create a new north-south trending structure northwest of the present ter-

minus of the Imperial fault. As the Brawley Seismic Zone shifted to the

northwest, so did the southern terminus of the San Andreas fault (Figure 6). The

Sand Hills lineament may be the remnant of an older segment of the San Andreas,

and except for residual seismic activity, left dormant with the northwest passage

of the Brawley Seismic Zone.

It is possible to make a rough estimate for the migration rate of the Imperial

fault and Brawley Seismic Zone. Assuming a dip-slip offset rate of 3 mm/yr

(estimated above), approximately 330,000 years are required to form the 1000 m

basement offset measured along the Imperial fault at RL-1. The 3000 to 80,000

year age for the fault segment 20 km to the northwest (at RL-3), indicates that

the Brawley Seismic Zone has migrated about 20 km over the last 250,000 to

300,000 years. This yields a migration rate of about 7 cm/yr. While this rate is

only a very crude estimate, it is significant to note that it is quite comparable to

the 4.8 cm/yr spreading rate in the Gulf of California averaged over the last 3

million years [DeMets et al., 1987]. In fact, the northwesterly migration of the
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Brawley SeismicZone,and its underlying spreading center, may be directly associ-

ated with propagation of the Gulf of California rift system into the North Ameri-

can continent.

Conclusions

Geodetic, seismic, tectonic, and heat flow data in the Imperial Valley suggest

that the northern segment of the Imperial-Brawley fault system is extremely

young compared to the 4 to 5 million year age of the Imperial Valley. We find a

minimum age of 3000 years based upon the relationship between topography and

earthquake induced geodetic displacements, and a maximum age of 80,000 years

based upon observed basement offsets across the Imperial fault determined from

seismic refraction surveys. A young age is consistent with heat flow data which

indicate a distributed and ephemeral pattern of faulting in the Imperial Valley

[Lachenbruch et al., 1985].

In addition, we speculate that a disparity along the Imperial fault between the

observed seismic vertical displacements (maximum to the north) and the offset

recorded in the crystalline basement (maximum to the south) is a direct result of

the northwestward propagation of the Imperial fault and Brawley Seismic Zone.

A series of evenly spaced north-south surface ruptures and the Sand Hills seisml-

city lineament are consistent with this hypothesis. A 7 cm/yr migration rate,

similar to the rate of oceanic spreading in the Gulf of California, is calculated

from measured surface displacements and from variations in basement morphol-

ogy along the Imperial fault. The migration of the Brawley Seismic Zone and

Imperial fault may be associated with the propagation of the Gulf of California

rift system into the North American continent.
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Figure Cap_ions

Figure 1 - The Salton Trough (hatch pattern) is a transition zone between crustal

spreading in the Gulf of California and right-lateral transform motion along

the San Andreas fault. The Imperial Valley is that portion of the Salton

Trough north of the U.S. - Mexico border and south of the Salton Sea. Abbre-

viations are S.F., San Francisco; L.A., Los Angeles. Map modified from

Lachenbruch et al. [1985].

Figure 2 - The Imperial Valley and important faults. The Mesquite Basin is a

subaerial topographic depression of about 10 meters between the Imperial and

Brawley faults.

Figure 3 - Seismicity in the Imperial Valley between 1932 and 1980

(Caltech/USGS Catalog). Major events include the 1040 Imperial Valley (M s

--- 7.1), 1968 Borrego Mountain (M L ---_ 6.5), 1079 Imperial Valley (M s --

6.6), and the 1087 Superstition Hills (M s _--- 6.6, M s _-- 6.2) earthquakes.

The Brawley Seismic Zone is the active region between the northern reach of

the Imperial fault and the southern extent of the San Andreas. The Sand

Hills Seismic Lineament is shown by the shaded strip outlining earthquakes

trending southeast from the southern end of the San Andreas fault. Shown in

the inset are aftershocks of the 1070 earthquake which have been relocated

following the methods outlined in Doser and Kanamori [10881. The dashed

lines represent orthogonal faults used to satisfy the observed vertical deforma-

tion from the 1070 event [Reilinger and Larsen, 1986]. Focal mechanisms

(lower hemisphere, equal area projections [Reasenberg and Oppenheimer,

1985]) for events defining a northwest trend indicate right-lateral strike slip
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motion.

Figure 4 - Map of the Imperial Valley and important tectonic features. Abbrevia-

tions are RF, Rico Fault; BF, Brawley Fault; NE, North Extension. The

shaded pattern along each fault indicates the surface rupture from the 1979

earthquake. The Brawley Seismic Zone (hatched) is the region of high seismi-

city extending northwest from the northern reach of the Imperial fault. The

Salton Sea Geothermal Field is the shaded pattern along the southern section

of the Salton Sea. Refraction surveys [Fuis et al., 1984] cross the Imperial

fault at RL-1, RL-2, RL-3. The leveling route is shown by the series of dots

from the central Imperial Valley to the eastern border of the Salton Sea (each

dot representing a benchmark).

Figure 5 - Shown in a) is the elevation (dashed line) along the releveling route

between El Centro and the Salton Sea. The adjusted topography (solid line) is

the elevation with the northward tilt of-0.0011 radians removed. The 10

meter depression between 9 and 22 km is the surfacial expression of the

Mesquite Basin. Shown in b) are the elevation changes along the leveling

route from 1931 to 1941, 1941 to 1974, and 1978 to 1980. Note the strong

correlation between deformation and the surface expression of the Mesquite

Basin.

Figure 6 - Schematic diagram of past and present fault configurations in the

Imperial Valley illustrating the hypothesized northwesterly migration of the

Brawley Seismic Zone. In this model the Sand Hills Seismicity Lineament is

the extension of the San Andreas, left dormant after the passage of the Braw-

ley Seismic Zone.
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